o
    ^i                  ,   @   s  d dl mZmZmZ d dlZd dlmZ ddlmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ ddgZG dd deZd	d
e de de de de
 de d e_dee dee dee dee dee dee dee dee dededee ef dee ef dee ef de de dededed ef&d!d"Z!dee dee dee dee dee dee dee dee dededee ef dee ef dee ef de de dededed ef&d#d$Z"dee dee dee dee dee dee dee dee dedede de dee ef de de dededed ed%df(d&d'Z#ee!d(		)	)				)	)d-dee dee dee dee dee dee d*ee deded+ee dee dee ded edede de dee ef de de def*d,dZ$dS ).    )castOptionalUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_device_dtype_check_for_fused_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc
_fused_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_params_doc_stack_if_compiling
_to_scalar_use_grad_for_differentiable_view_as_real
DeviceDictDeviceDtypeDict	OptimizerParamsTAdamadamc                       s   e Zd Z					ddddddddded	eeef d
eeeef eeef f dededede	e dededede	e def fddZ
 fddZdd ZedddZ  ZS )r   MbP?g?g+?:0yE>r   FN)foreachmaximize
capturabledifferentiablefuseddecoupled_weight_decayparamslrbetasepsweight_decayamsgradr    r!   r"   r#   r$   r%   c                   s  t |tr|r|	std| dkrtdd|ks"td| d|ks-td| d|d   kr9dk sCn td	|d  d|d   krOdk sYn td
|d  d|ksdtd| t |d trrt |d tst |d trt |d tstdt |d tr|	s|rtd|d  dkrtdt |d tr|	s|rtd|d  dkrtd||||||||	|
||d}t || |r|
rtdd| _|rtdd S d S )NElr as a Tensor is not supported for capturable=False and foreach=Truer   Tensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: z0betas must be either both floats or both TensorszKbetas[0] as a Tensor is not supported for capturable=False and foreach=Truez!Tensor betas[0] must be 1-elementzKbetas[1] as a Tensor is not supported for capturable=False and foreach=Truez!Tensor betas[1] must be 1-element)r'   r(   r)   r*   r+   r!   r    r"   r#   r$   r%   z)`fused` does not support `differentiable`Tz0`fused` and `foreach` cannot be `True` together.)	
isinstancer   
ValueErrornumelfloatsuper__init__RuntimeError_step_supports_amp_scaling)selfr&   r'   r(   r)   r*   r+   r    r!   r"   r#   r$   r%   defaults	__class__ K/var/www/html/RAG/RAG_venv/lib/python3.10/site-packages/torch/optim/adam.pyr5   #   sz   
zAdam.__init__c                    s   t  | | jD ]k}|dd |dd |dd  |dd |dd |dd |dd }|d	 D ]:}| j|g }t|d
krst|d sst	|d }|d s]|d ritj
|t|d|jdntj
|t d|d< q9q	d S )Nr+   Fr!   r    r"   r#   r%   r$   r&   r   stepis_fuseddtypedevicerB   )r4   __setstate__param_groups
setdefaultstategetlentorch	is_tensorr3   tensorr   rC   )r8   rH   groupr$   pp_statestep_valr:   r<   r=   rE   r   s4   
zAdam.__setstate__c                 C   s~  d}|d D ]}	|	j d ur|t|	O }||	 |	j jr!td||	j  | j|	 }
t|
dkr||d r:t|	 |d sB|d rPtj	dt
|d d|	jd	ntjd
t
 d|
d< tj|	tjd|
d< tj|	tjd|
d< |d r|tj|	tjd|
d< ||
d  ||
d  |d r||
d  |d r|
d jrtd|d rt|d r|d std||
d  q|S )NFr&   zJAdam does not support sparse gradients, please consider SparseAdam insteadr   r$   r"   r<   r?   rA   r.   rD   r>   )memory_formatexp_avg
exp_avg_sqr+   max_exp_avg_sqr#   zB`requires_grad` is not supported for `step` in differentiable moder    r'   r,   )gradrK   
is_complexappend	is_sparser6   rH   rJ   r	   zerosr   rC   rM   
zeros_likepreserve_formatrequires_gradrL   )r8   rN   params_with_gradgradsexp_avgsexp_avg_sqsmax_exp_avg_sqsstate_stepshas_complexrO   rH   r<   r<   r=   _init_group   sl   








zAdam._init_groupc                 C   s   |    d}|dur!t  | }W d   n1 sw   Y  | jD ]V}g }g }g }g }g }g }	|d \}
}| |||||||	}t||||||	f|d ||
||d |d |d |d |d |d	 |d
 |d t| ddt| dd|d d q$|S )zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr(   r+   r'   r*   r)   r!   r    r"   r#   r$   
grad_scale	found_infr%   )r+   rd   beta1beta2r'   r*   r)   r!   r    r"   r#   r$   rf   rg   r%   ) _cuda_graph_capture_health_checkrK   enable_gradrF   re   r   getattr)r8   closurelossrN   r^   r_   r`   ra   rb   rc   rh   ri   rd   r<   r<   r=   r>      s`   





z	Adam.step)r   r   r   r   FN)__name__
__module____qualname__r   r   r3   r   tupleboolr   r5   rE   re   r   r>   __classcell__r<   r<   r:   r=   r   "   sT    	
	
OKaf  Implements Adam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
                \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)}          \\
            &\hspace{13mm}      \lambda \text{ (weight decay)},  \: \textit{amsgrad},
                \:\textit{maximize},  \: \epsilon \text{ (epsilon)}                              \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0\leftarrow 0 \text{ (second moment)},\: v_0^{max}\leftarrow 0          \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\

            &\hspace{5mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{10mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{5mm}\textbf{if} \: \lambda \neq 0                                           \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{5mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{5mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{5mm}\textbf{if} \: amsgrad                                                  \\
            &\hspace{10mm} v_t^{max} \leftarrow \mathrm{max}(v_{t-1}^{max},v_t)                  \\
            &\hspace{10mm}\widehat{v_t} \leftarrow v_t^{max}/\big(1-\beta_2^t \big)              \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}\widehat{v_t} \leftarrow   v_t/\big(1-\beta_2^t \big)                  \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/
                \big(\sqrt{\widehat{v_t}} + \epsilon \big)                                       \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
    z
    Args:
        a  
        lr (float, Tensor, optional): learning rate (default: 1e-3). A tensor LR
            is not yet supported for all our implementations. Please use a float
            LR if you are not also specifying fused=True or capturable=True.
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_weight_decay (bool, optional): if True, this optimizer is
            equivalent to AdamW and the algorithm will not accumulate weight
            decay in the momentum nor variance. (default: False)
        amsgrad (bool, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False)
        z	
        a=  
    .. Note::
        A prototype implementation of Adam and AdamW for MPS supports `torch.float32` and `torch.float16`.
    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ

    r&   r_   r`   ra   rb   rc   rf   rg   r+   rd   rh   ri   r'   r*   r)   r!   r"   r#   r%   c          '      C   sp  |d u r|d u s
J t j r%t|tsJ t|
tsJ t|ts$J nt|}t|
tr7|
j|
jf|
i}nd }t	| D ]\}}|sH|| n||  }|| }|| }|| }t j
 sy|ryt }|jj|jjkrq|jj|v syJ d| d|d7 }|dkr|r|d||   n"|rt|tr|jr|| |}n|j||d}n|j||d}t |rt |}t |}t |}|rt || ||< t |}|j}|d ur|j}||f}||vr|
j||dd||< || }n|
}||d|  |r)t|tr)|jr|jt |d| d n||j||ttd| d	 n||j||d| d	 |s<|r|}|r[t|
tr[|
jrTd|
|   } nd|
|  } nd|
|  } |r~t|tr~|jrwd||   }!nd||  }!nd||  }!||  }"|" }#|! }$|r|r||  }%n|| }%|| t |%| ||  |$|#  ||# }&n| |$|#  ||# }&|r|| |& nL|||& nEt|}d|
|  } d||  }!||  }"|!d
 }$|rt j|| ||| d ||  |$ |}&n	| |$ |}&|j||&|" d	 |r5t | | r5t  || ||< q=d S )NIIf capturable=True, params and state_steps must be on supported devices: .r   r   alphaT)rC   rB   non_blocking)weight)value      ?)out)!rK   jitis_scriptingr0   r3   r   r   rC   rB   	enumeratecompileris_compilingr   typemul_r]   addcmul_cloneaddrW   view_as_realtolerp_squarer   negsqrtcopy_maximumadd_addcdiv_r   view_as_complex)'r&   r_   r`   ra   rb   rc   rf   rg   r+   rd   rh   ri   r'   r*   r)   r!   r"   r#   r%   
beta1_dictiparamrV   rS   rT   step_tcapturable_supported_devicesrC   rB   keydevice_beta1r>   bias_correction1bias_correction2	step_sizestep_size_negbias_correction2_sqrtrU   denomr<   r<   r=   _single_tensor_adamY  s   









	


 r   c          +   	      s  t | dkrd S ttr|std dkrtdt tr2|s(td  dkr2tdttrG|s=td dkrGtdtj si|rit	d	d
t
fddt| |D siJ d d|d u rq|d u ssJ |ryJ dtt| |||||g}t trt jdkr j ind }| D ]\\}}}}}}}ttt |}ttt |}ttt |}ttt |}ttt |} |d j}!|d ur|!|vr j|!dd||!< |r||! n }"|	r|rttt |}#t|||||# nt|||| |rt|}tj s*| d jr*tj| tjddddd nt| d |dkrW|rCt|d|   n|rOtj|||d ntj|||d}t||ttd|"  t| ttjr{t|d }$d}%n|}$d }%t||$||% ~~$|rt  | }&t | }'t!|&d t!|'d t"|' t#|& t$|& t%|' |&}(|'})|rttt |}#t&|#| t'|#}*nt'|}*t#|*|) t|*| t#|*|( t(|||* q fdd| D }&fdd| D }'t)fdd|&D }(dd |'D })|r.ttt |}#t&|#| t'|#}*nt'|}*t#|*|) t|*| t(|||*|( qd S )Nr   r,   r   r-   zHbeta1 as a Tensor is not supported for capturable=False and foreach=TruezTensor beta1 must be 1-elementzHbeta2 as a Tensor is not supported for capturable=False and foreach=TruezTensor beta2 must be 1-elementF)supports_xlac                 3   s0    | ]\}}|j j|j jko|j j v V  qd S ro   )rC   r   ).0rO   r>   )r   r<   r=   	<genexpr>V  s    

z%_multi_tensor_adam.<locals>.<genexpr>rv   rw   z#_foreach ops don't support autogradcpuTrC   rz   r/   )rC   rx   c                       g | ]
}d  t |  qS r   r   r   r>   )rh   r<   r=   
<listcomp>      z&_multi_tensor_adam.<locals>.<listcomp>c                    r   r   r   r   )ri   r<   r=   r     r   c                    s   g | ]} | d  qS )r<   r   bc)r'   r<   r=   r     s    c                 S   s   g | ]}|d  qS )r}   r<   r   r<   r<   r=   r     s    )*rJ   r0   r   r6   r2   r1   rK   r   r   r   allzipr   r   "_group_tensors_by_device_and_dtypestrrC   valuesr   listr   r   _foreach_negis_cpu_foreach_add_rM   _foreach_mul__foreach_add_foreach_lerp_r3   _foreach_mul_foreach_addcmul__foreach_pow_foreach_sub__foreach_neg__foreach_div__foreach_reciprocal__foreach_sqrt__foreach_maximum__foreach_sqrt_foreach_addcdiv_r   )+r&   r_   r`   ra   rb   rc   rf   rg   r+   rd   rh   ri   r'   r*   r)   r!   r"   r#   r%   grouped_tensorsr   device_params_device_grads_device_exp_avgs_device_exp_avg_sqs_device_max_exp_avg_sqs_device_state_steps__device_paramsdevice_gradsdevice_exp_avgsdevice_exp_avg_sqsdevice_state_stepsrC   r   device_max_exp_avg_sqsscaled_device_gradsr|   r   r   r   r   exp_avg_sq_sqrtr<   )rh   ri   r   r'   r=   _multi_tensor_adam   s&  
















 r   returnc          '      C   s  | sd S |r
t d|d ur|j|ini }|d ur|j|ini }t|tr1t|jdkr1|j|ind }t| |||||g}| D ]\\}}\\}}}}}}}tt	t |}tt	t |} tt	t |}!tt	t |}"tt	t |}#d\}$}%|d ur|
||j|dd}$|d ur|
||j|dd}%|d ur||vr|j|dd||< || }t|#d |stjntj}&|&|| |!|"||#|||
|||||$|%d |%d urt|#|%gt|#  qBd S )	Nz9Adam with fused=True does not support differentiable=Truer   )NNT)rz   r   r   )	r+   r'   rh   ri   r*   r)   r!   rf   rg   )r6   rC   r0   r   r   r   r   itemsr   r   rG   r   rK   r   _fused_adam__fused_adamw_r   rJ   )'r&   r_   r`   ra   rb   rc   rf   rg   r+   rd   rh   ri   r'   r*   r)   r!   r"   r#   r%   grad_scale_dictfound_inf_dictlr_dictr   rC   r   r   r   r   r   r   r   r   r   r   r   r   device_grad_scaledevice_found_inffuncr<   r<   r=   _fused_adam  s   $r   )single_tensor_fnFr    r$   c                C   s  |	du r|du rt | |dd\}}|rt|tr|sd}|	du r"d}	|du r(d}tj s:tdd |D s:td|rEtj	 rEtd|	rPtj	 rPtd|	rZtj	 sZt
}n|rdtj	 sdt}nt}|| |||||f|||||||||||
||d	 dS )
znFunctional API that performs Adam algorithm computation.

    See :class:`~torch.optim.Adam` for details.
    NF)	use_fusedc                 s   s    | ]	}t |tjV  qd S ro   )r0   rK   r   )r   tr<   r<   r=   r     s    
zadam.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsz6torch.jit.script not supported with foreach optimizersz4torch.jit.script not supported with fused optimizers)r+   rd   rh   ri   r'   r*   r)   r!   r"   r#   rf   rg   r%   )r   r0   r   rK   r   r   r   r6   r   r   r   r   r   )r&   r_   r`   ra   rb   rc   r    r"   r#   r$   rf   rg   rd   r%   r+   rh   ri   r'   r*   r)   r!   r   r   r<   r<   r=   r   u  s^   #
)NFFNNNFF)%typingr   r   r   rK   r   	optimizerr   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   __all__r   __doc__r   rt   r3   r   r   r   r   r<   r<   r<   r=   <module>   s  X r%G




 H




 v


`
	

